imoptosky@gmail.com
Navigation
media

Why to Use Visible-Near Infrared Spectroscopy to Determination of Soil Organic Matter

Millions of soil analyses are performed every year around the world to increase crop yields. However, the two main conventional methodologies to determine the SOM (Walkley–Black and dry-combustion) are time-consuming and expensive, and hence are not suitable for use on a large scale. Also, the Walkley–Black method is damaging to the environment. Therefore, why could use visible-near infrared spectroscopy?

The Walkley–Black method is damaging to the environment, generating residues that require treatment, and, therefore, is not suitable for sustainable agricultural practices. As an alternative to the traditional methods, visible-near infrared (vis-NIR) spectroscopy can provide fast, low-cost and accurate results for SOM analyses in an environmentally friendly way. Also, the methodology is non-destructive and does not require additional sample preparation. A comparison between the two methodologies is illustrated below figure.

The reseacher robustness presented by the proposed methodology involving vis-NIR spectra and machine learning has created high expectations for the possibility of mitigating/eliminating the use of heavy metal reagents in soil fertility analysis. Also, the methodology has potential to be used as a replacement for the traditional method in the future. Knowledge of soil fertility, supported by a green analytical methodology, could pave the way for increasing sustainable agricultural productivity.
As the key of soil analysis experiment, near-infrared spectroscopy is very important. Optosky recommend ATP8600 which low cost NIR spectrometer covers 900-1700nm, small size and could be used as part of the machine's near-infrared modular better.

Comments: 0

No comments

Leave a Reply

Your email address cannot be published. Required fields are marked*

Related Products
Popular Tags
fast identify liquid reagent on quanitification method How to Controll Drugs and Narcotics by Safity Non-destructive Identification? ATR8000 automatic high-throughput Raman spectrometer ATR8000-first-appeared all-automatic & high throughput portable Raman analyzer OPTOSKY AT SPIE BIOS Expo 2020 fast test fake by raman OPTOSKY is coming to SPIE ATR8000 detect demonstration Thanksgiving! Raman identify starch medicinal accessories ATR3200 Double-Wavelength Raman Spectrometer ATH3010 Rotary-broom hyperspectral camera What is the advantage of 1064nm Raman of Optosky? What is the new choise for Raman characterization f carbon materials? new method for rapid detection of counterfeit drugs handheld raman spectrometer raman spectrometer raman spectrometer diagram optosky Why optosky measures absorbance by modular spectrometer? Handheld Raman spectrometer of optosky optical analysis instrument RMID raman spectrscopy portable Raman analyzer Merry Christmas from optosky How is the Raman spectrometer of optosky used in optical ? New dual wavelength Raman spectrometer for detect small sample in lab. ATR6500 penetrating and long-distance video How many advantagesof Raman ID applied to pharmaceutical industry? 2020 SPIE BIOS And West Photonic Show with Optosky 【Video】Portable Hyperspectral Camera measure ATH60 series Lab Hyperspectral Imaging Cabinet detect Airborne Hyperspectral Imaging Diamond Raman OPTOSKY Is Ready For 2020 live Live What is the advantage of 1064nm Raman spectrometer? NanoBio serise uv-vis Spectrometer UV-Vis Spectrophotometer How to use 1064nm Handheld Raman Spectrometer rapid test narcotics ? Raman spectroscopy Fieldspec Portable NIR Grain Analyzer Handheld RamanSpectrometer fast measure accurate test Measuring Fentanyl full-range spectroradiometers Soil salinization Portable Raman Spectroscopy ,Food Analysis Field Operation Food Safety The Fieldspec Accessory --Contact Probe Hyperspectral remote sensing 5th generation ultra-light ultra-thin small size Pocket Raman Spectrometer Mini Instrument fieldspec Crop yield estimation Hyperspectral remote sensing technology Hand-held Raman Raman Spectrometer Portable or Benchtop Raman Sorting Technology Raman Raman spectrometer Hyperspectral imager Hyperspectral and LiDAR data identify -diamonds-raman- spectrometer Borax ID by Raman Imaging Microscope Ancient Painting Restoration by Confocal Raman Microscope soybean varieties classification Red tides detailed spatial distribution rice leaf blast (RLB) infection raman imaging microscope Ultraviolet (UV) hyperspectral the manufacturing product chain Scientific -Grade Quodriband Raman Microscope Raman Spectrometer for Food Additive Detection Raman Spectrometer For Distinguishing Chinese herbal medicine raman microspectrometer cataracts Experimental Teaching System of Raman Spectrometer chemical research Textile testing Raman technology Raman spectrometers Raman Spectrum HBCO Blood Detection Forensic Science HGB Hyperspectral imaging Materials Science thin film structural materials superlattice materials semiconductor material high temperature resistant materials carbon nano materials Hyperspectral Imagery for Oil Spill Detection the spectralum of microplastics Fluorescence imager Total organic carbon Time-of-flight mass analyzer X ray fluorescence ATR FT-IR spectrometer AAS NIR IR Water Quality Online Monitoring Solution ATH ATP ATF ATE UV GF GA Introduction to the optical path of a spectrometer Spectrometer-In-Smart-Fluorescent-Materials