What is Raman Spectroscopy?
  Raman effect is first discovered by C.V. Raman and K.S Krishan in 1928. When a sample exposes monochromatic light, the sample absorbs the light, visual portion of light gets transmitted to the sample. However, a minor part of the light is scattered by the sample in all direction. Incident light has a particular frequency, if scattering light has frequency same as incident light, the scattering is called Rayleigh scattering. It has been observed that about 1% of total scatter intensity occurs frequency different from incident frequency, this is called Raman scattering. Raman scattering can be called a two photon process, an electron has different vibrational levels, they are defined by different specific energy differences.
  When an incident molecular light interacts with an electron in the sample, an electron absorbs energy from an incident photon. It strikes the state of virtual energy, the energy transform is given by a formula. the electron falls back to energy level by losing energy. If energy loss equals the energy of the incident photon. An electron falls back to an initial level, and if this process emits another photon, since the energy loss equal value same frequency of the incident photon, as the frequency is same, Rayleigh scattering occurs. However, sometimes electron loss energy from virtual state to fall back to different vibration level. In this case, energy loss by the electron is different, and the energy absorbed from incident photon, as a result, photon emitted, the photon has energy different from incident photon, it's possible when the frequency of emitted photon is different from the frequency of incident photon, this gives right to Raman scattering, depends on final energy of electron or final vibrational of electron, Raman scattering can be separated into two, stock lines and anti-stocks lines.
        If the frequency of scattering photon less than the frequency of the incident photon, stocks lines is observed on Raman spectra. It happens when an electron absorbs energy, Similarly, If frequency If scattering photon greater than the frequency of the incident photon, anti-stocks lines is observed, this means the energy released by the electron. Raman spectra give a molecular fingerprint, different molecules have different Raman spectra, By studying spectra, one can identify rotational levels and, it helps to perform analysis of qualitative, similarly, the intensity of particular Raman lines help determine the concentration of molecule in a sample, In this manner, quantitive analysis can be done. Thus Raman spectroscopy can be used as both qualitative and quantitative analysis tool. Raman Instrument has a complete line of handheld Raman Analyzer, Portable Raman Spectrometer, Raman Microscope, Educational Raman System etc.


Q: What is the application of Raman spectrometer used in public safety?

A: When we still vividly remember the unpleasant memories happened in 2014 Xiamen city and a burned bus on which the passengers bringing the petrol along and bus burned suddenly killing many passengers. If the Raman spectrometer can be used to detect the explosives flammable and hazardous liquids on the entrance can avoid this accident. It takes few seconds to detect results, entrance and exit on the Metro, airport, BRT, bus, stadium, and large public places. And also government court, Police, Jail and fire fighting.

Q: What is the application of Raman spectrometer used in public safety?

A: In Jail, there are some criminals have potential intention of killing themselves. These criminals could find ways to bring in drugs, toxic substance inside jail. It’s needed to detect the presence of these toxic substance before entering jail. In court, there are some defendants who threatening to kill themselves to prove their own innocent. It’s necessary to use Raman spectrometer to detect the toxic substances before entering the court. The police arrest drug dealers and few criminal investigations and illegal factory check. Only the applications related to the drug enforcement administration, customs entry and exit, and police border defenses and fire brigade and court and jail. It’s known that fentanyl has many hundreds of variance and a Raman spectroscopy is very good tool to take fast take hundreds fentanyl variants to perform field criminal investigation on illegal factory check. Such as the 1064nm handheld Raman spectrometer can export good spectra of methamphetamine, Ketamine, Ephedrine. Etc.

Q: What is the application of handheld Raman analyzer used to identify gemstones?

 A: Handheld Raman analyzer, Portable Raman spectrometer, and Raman microscope are used to identify gemstones, Jade bracelet, diamond ring. Raman spectroscopy technology is the a great tool to identify true and take gemstones.

Q: What is the application of Raman spectrometer used in biomedical industry?

A: Raman Spectrometer is applied to biomedical industry, such as non invasive blood glucose.  The Samsung company announced the non invasive blood glucose wristband applied Raman spectroscopy technology. Apple company is researching on it. These two well-known companies had already developed the finished blood glucose wristband, say, non invasive blood glucose wristband have already made the industrialization possible. And the Raman spectrum can display different blood concentrations shown on a cell phone APP.

Q: What is the Raman spectrometer applied to detect cancer?

 A: In the published paper reviewed that the patients diagnosed cancer can be identified by Raman spectroscopy. The patient diagnosed cancer shows the peak in 751nm, and the healthy person shows the peak in 758nm, there are 7cm-1 shift and and this paper writer confer the accuracy is high. In addition, the Raman spectroscopy is applied to detect skin cancer. 


There are no products to list in this category.