imoptosky@gmail.com
Navigation
media

Where Has Low Cost Handheld Raman Spectrometer For Pharmaceuticals Quality Assurance?

Drug companies optimize their production operations across the world to stay competitive in the pharmaceutical industry. However, production delocalization forces them to thoroughly analyze the incoming raw materials for quality control, product safety and regulatory purposes, which can eventually increase the cost. Additionally, the industry is shifting from a representative sampling method towards a total traceability of the incoming materials, thus affecting factory efficiency and operational costs. Hence, stringent control over the quality and safety of all materials which used in the production of a pharmaceuticals is essential.

This article covers the affordability and advantages of using handheld Raman spectrometer for this purpose.

Handheld Raman Instruments

In the pharmaceutical industry, the advent of portable and handheld Raman equipments has enabled new analytical capabilities for production traceability, quality control and quality assurance. Nowadays, Optosky can be equipped with a variety of analytical techniques such as Mid-infrared, Near infrared, and UV & Visible capabilities.

These handheld instruments can deliver data quality comparable to conventional laboratory-grade bench devices in certain cases.

One of the most widely adopted portable devices for this type of quality control is Raman spectroscopy, which enables rapid determination of unknown compounds, such as the measurement of pharmaceutical ingredients, the validation of high purity chemicals, and the authentication of drug compounds.

Raman technology is ideal for the direct analysis of an unknown material in a Optosky environment as it requires little to no sample preparation. Moreover, it can handle different forms of samples, including slurries, gels, solutions, crystals, powder, and can perform analysis directly through a plastic bag or clear container.

A major drawback of the Raman technology is the associated auto-fluorescence signal, which can affect the capability to collect an interference-free Raman signature of a material. Nevertheless, this issue can be alleviated by compensating for the fluorescence signal using algorithms. The following are the key advantages of the Raman technique that make it the most robust methodology for material identification:

  • Reduction of the instrument size
  • Lowering of the detection limits
  • Low cost of operation
  • Outstanding usability of the technique

Handheld Raman Instruments of Optosky 

Increasing existing analytical laboratory capabilities is one option (Option/Scenario 1) to improve the analytical capability at a minimum cost. However, considering the overall analytical capabilities of the company and the return on investment (ROI), this option is acceptable only if the numbers of samples to be studied are very small. This option is typically suitable for companies that handle less than 10 different materials and when the majority of the samples are already under analysis, so their operational costs are slightly affected by the incremental increase.

Instrumentation

For this analysis, the ATR6500 handheld Raman spectrometer from Optosky Photonic Inc. was selected. The ATR6500 handheld Raman and integrated computing system is specially designed for novice users to perform material identification and validation within GMP compliant facilities. It enables developing standardized and validated procedures rapidly to facilitate purity and quality control applications.

For determining pharmaceutical materials, the ATR6500 is equipped with a software package that conforms to both cGMP and 21CFR part 11 certification. Optosky also offers optional IQ/OQ services and library/method development services for all ATR6500 users.

Comments: 0

No comments

Leave a Reply

Your email address cannot be published. Required fields are marked*

Popular Tags
fast identify liquid reagent on quanitification method How to Controll Drugs and Narcotics by Safity Non-destructive Identification? ATR8000 automatic high-throughput Raman spectrometer ATR8000-first-appeared all-automatic & high throughput portable Raman analyzer OPTOSKY AT SPIE BIOS Expo 2020 fast test fake by raman OPTOSKY is coming to SPIE ATR8000 detect demonstration Thanksgiving! Raman identify starch medicinal accessories ATR3200 Double-Wavelength Raman Spectrometer ATH3010 Rotary-broom hyperspectral camera What is the advantage of 1064nm Raman of Optosky? What is the new choise for Raman characterization f carbon materials? new method for rapid detection of counterfeit drugs handheld raman spectrometer raman spectrometer raman spectrometer diagram optosky Why optosky measures absorbance by modular spectrometer? Handheld Raman spectrometer of optosky optical analysis instrument RMID raman spectrscopy portable Raman analyzer Merry Christmas from optosky How is the Raman spectrometer of optosky used in optical ? New dual wavelength Raman spectrometer for detect small sample in lab. ATR6500 penetrating and long-distance video How many advantagesof Raman ID applied to pharmaceutical industry? 2020 SPIE BIOS And West Photonic Show with Optosky 【Video】Portable Hyperspectral Camera measure ATH60 series Lab Hyperspectral Imaging Cabinet detect Airborne Hyperspectral Imaging Diamond Raman OPTOSKY Is Ready For 2020 live Live What is the advantage of 1064nm Raman spectrometer? NanoBio serise uv-vis Spectrometer UV-Vis Spectrophotometer How to use 1064nm Handheld Raman Spectrometer rapid test narcotics ? Raman spectroscopy Fieldspec Portable NIR Grain Analyzer Handheld RamanSpectrometer fast measure accurate test Measuring Fentanyl full-range spectroradiometers Soil salinization Portable Raman Spectroscopy ,Food Analysis Field Operation Food Safety The Fieldspec Accessory --Contact Probe Hyperspectral remote sensing 5th generation ultra-light ultra-thin small size Pocket Raman Spectrometer Mini Instrument fieldspec Crop yield estimation Hyperspectral remote sensing technology Hand-held Raman Raman Spectrometer Portable or Benchtop Raman Sorting Technology Raman Raman spectrometer Hyperspectral imager Hyperspectral and LiDAR data identify -diamonds-raman- spectrometer Borax ID by Raman Imaging Microscope Ancient Painting Restoration by Confocal Raman Microscope soybean varieties classification Red tides detailed spatial distribution rice leaf blast (RLB) infection raman imaging microscope Ultraviolet (UV) hyperspectral the manufacturing product chain Scientific -Grade Quodriband Raman Microscope Raman Spectrometer for Food Additive Detection Raman Spectrometer For Distinguishing Chinese herbal medicine raman microspectrometer cataracts Experimental Teaching System of Raman Spectrometer chemical research Textile testing Raman technology Raman spectrometers Raman Spectrum HBCO Blood Detection Forensic Science HGB Hyperspectral imaging Materials Science thin film structural materials superlattice materials semiconductor material high temperature resistant materials carbon nano materials Hyperspectral Imagery for Oil Spill Detection the spectralum of microplastics Fluorescence imager Total organic carbon Time-of-flight mass analyzer X ray fluorescence ATR FT-IR spectrometer AAS NIR IR Water Quality Online Monitoring Solution ATH ATP ATF ATE UV GF GA Introduction to the optical path of a spectrometer Spectrometer-In-Smart-Fluorescent-Materials