

High-Sensitivity & High-Resolution, TE-Cooled Back-Thinned Spectrometer

ATP5200

Feature:

- Detector: Back-thinned illuminated CCD (cooled to - 10°C)
- Pixels: 2048 pixels
- UV or NIR response enhanced optimization: UV response enhanced: ATP5200P, NIR response enhanced: ATP5200R
- Low noise CCD signal processing circuit
- Max. Wavelength Range: 180-1180nm(depends on specific requirements)
- Optical Sensitivity: 0.01-3nm (Depends on range and slit).
- Optical Path: Crossed C-T
- Integration Time: 2ms-130s
- Power Supply: DC 5V \pm 10% @ <2.3A
- 18 bit, 570KHz ADC (workable output 16bit)
- Interface: SMA905 or free space
- Trigger: USB2.0 (High speed) or UART
- 20 pins dual-row programmable external expansion interface

Applications:

- Raman spectrometer, online Raman analysis
- Micro volume spectrophotometer
- Weak fluorescent light detection
- Reflectance, Transmittance, Absorbance detection
- Fruit Sorting.

Description:

ATP5200 is the fifth generation of TE-cooled high performance spectrometer, which self-developed by Optosky, It uses a back-thinned TE-cooled linear CCD with a semi-conductor cooling technology. The CCD can set in constant temperature environment (up to - 10 degree), which greatly reduces sensor an excellent noise at signal-to-noise ratio (about 2 times higher than competitors level), and it improves the reliability, so the measurements results can not change with the ambient temperature.

Meanwhile, it uses lowest noise CCD signal processing pcb to reach a noise less than 3 counts, which still the best low noise level.

The ATP5200 can receive SMA905 fiber optic input or free-space light to output spectral data via USB2.0 or UART port. It connects to 5V DC power supply, easy-to-integrate to wide industrial spectroscopy application.

Model	Features		
ATP5200	2048 pixels, cooled - 5°C		
ATP5200P	2048 pixels, cooled - 10°C		
ATP5200R	NIR enhanced, 2048 pixels, cooled - 10°C		
ATP5200-4	4096 pixels, cooled - 5°C		

1

1. Parameters

ATP5200		ATP5200-4	ATP5200P	ATP5200R		
Detector						
Model	Linear array CCD	Linear array CCD	Area array back-thinned CCD	Area array back-thinned CCD		
Cooling -5°C -5°C Temperature -5°C			-10°C	-10°C		
	Spectrum Range 180-1100nm 180-11		180-1100nm	180-1180nm		
Effective Pixels	2048	4096	2048×64	2048×64		
Pixel size	200×14	200×7	14×14	14×14		
SNR	450:1	450:1	850:1	850:1		
Dynamic Range	10000: 1	10000: 1	15000: 1	15000: 1		
OPTICAL PARAMET	ΓER					
Wavelength Range	180-1180nm (Depends on specific application)					
Optical Resolution	0.01-3nm (Depend on range & slit)					
Optical Design	f/4 crossed, asy	f/4 crossed, asymmetrical C-T				
Focus	98 mm for incidence / 107 mm for output					
Silt size	5, 10, 25, 50, 100, 150, 200μm (optional)					
Optical Interface	Fiber optic inte	erface SMA905,	free space			
ELECTRICAL PARA	METERS					
Integration Time 400μs~10s		400μs~10s	5 ms - 30 min	5 ms - 30 min		
Data output interface	USB 2.0					
ADC	16bit	16bit	18 bit (Output 16bit)	18 bit (Output 16bit)		
Supply Voltage	DC 5V±10%					
Working current	<2.3A					
Storing Temp	-20°C to +70°C					
Working Temp	-10°C to +50°C					
PHYSICAL						
Size	208×120×47 mm					
Wight	1.5-1.7 kg					

2

2. ATP5200P vs ATP5200R

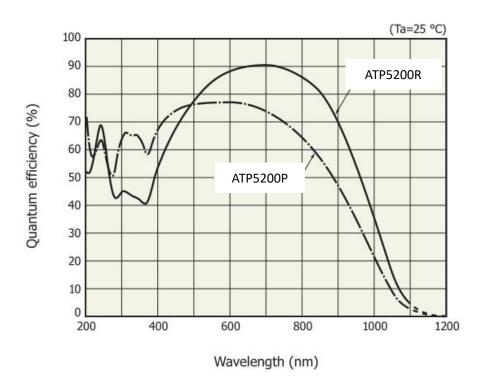


Fig 1 ATP5200R is designed to enhance NIR response, the higher NIR response in the rear range >500nm, ATP5200P is designed to enhance UV response, the higher UV response in the front range <500nm.

3. ATP5200P vs ATP5020P

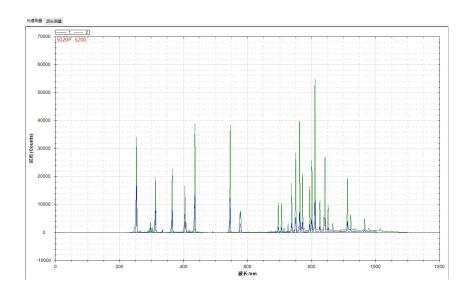


Fig 2 ATP5200P and ATP5020P measured the data of mercury-argon lamp respectively (same measurement conditions).

The green line is the measured spectrum of ATP5200P, and the blue line is the measured spectrum of ATP5020P. It can be seen from the figure that the sensitivity of ATP5200P is more than one times higher than that of ATP5020P.

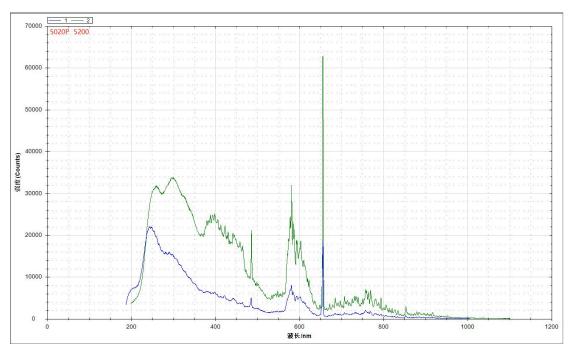
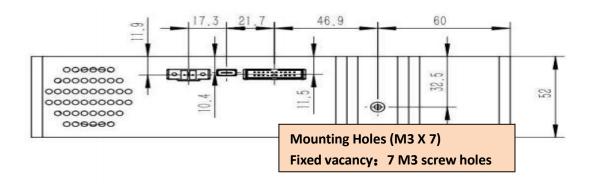


Fig 3 ATP5200P and ATP5020P measured the data of deuterium halide lamps respectively (under the same measurement conditions). The green line is the measured spectrum of ATP5200P, and the blue line is the measured spectrum of ATP5020P. It can be seen from the figure that the sensitivity of ATP5200P is one times higher than that of ATP5020P.

4


4. ATP5200

5. Mechanical Diagrams

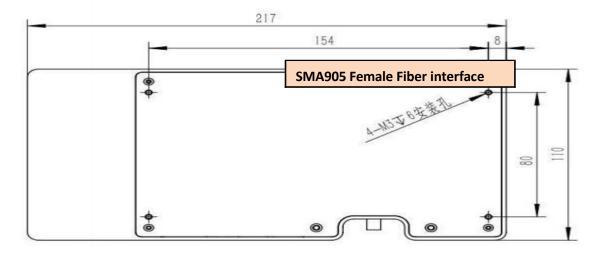


Fig 4 Dimension

6. Electrical Pin-out

Parameter	Min	Тур	Max	Unit
Operating voltage range	4.5	5	5.5	V
Operating current	170	500	2000	mA
High level input voltage	1.7		3.6	V
Low level input voltage	-0.3		1	V
High level output voltage	2.4			V
Low level output voltage			0.4	V

Table 1 Electrical Characteristics

The module is equipped with a 20-pin male angled box header(2x10, 200 mm pitch) and USB2.0 B type interface.

The 20-pin connector is a Samtec part # STMM- 110-02-L-D-RA connector. The mate to this is a Samtec part # TCSD- 10-D-XX.XX-01-N.

Pin#	Description	I/O	Function Description		
1	VCC	/	Power Supply, 5V±0.5,		
2	GND	/	Ground		
3	UART_TX	Output	UART Transmit signal		
4	UART_RX	Input	UART Receive signal		
5	Lamp_En	Output	LVTTL output the lamp enable signal.		
6	Continuous_strobe	Output	LVTTL output the continues strobe signal.		
7	Ext_trigger_in	Input	LVTTL input the trigger signal.		
8	Single_strobe	Output	LVTTL output the single strobe signal.		
9	SPI_SCK	Output	The SPI Clock signal for communications to other SPI peripherals		
10	10 SPI_MOSI	Output	The SPI Master Out Slave In (MOSI) signal for communications to other		
			SPI peripherals		
11	SPI_MISO	Input	The SPI Master In Slave Out (MISO) signal for communications to other SPI peripherals		
12	SPI_CS	Output	The SPI Chip/Device Select signal for communications to other SPI peripherals		
12	CDIO	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
13	GPIO0	/Output	Logic.		
14	CDIO1	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
14	GPIO1	/Output	Logic.		
15	GPIO2	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
13		/Output	Logic.		
16	GDIO2	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
16	GPIO3	/Output	Logic.		
17	GPIO4	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
1 /	UPIU4	/Output	Logic.		
18	GPIO5	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
16		/Output	Logic.		
19	GPIO6	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
17		/Output	Logic.		
20	GPIO7	Input	General Purpose Software Programmable Digital Inputs/Outputs, LVTTL		
20		/Output	Logic.		

7